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Abstract 

Changes of Land Use and Land Cover (LULC) affect atmospheric, climatic, and biological 

spheres of the earth. Accurate LULC map offers detail information for resources management 

and intergovernmental cooperation to debate global warming and biodiversity reduction. This 

paper examined effects of pansharpening and atmospheric correction on LULC classification. 

Object-Based Support Vector Machine (OB-SVM) and Pixel-Based Maximum Likelihood 

Classifier (PB-MLC) were applied for LULC classification. Results showed that atmospheric 

correction is not necessary for LULC classification if it is conducted in the original 

multispectral image. Nevertheless, pansharpening plays much more important roles on the 

classification accuracy than the atmospheric correction. It can help to increase classification 

accuracy by 12% on average compared to the ones without pansharpening. PB-MLC and 

OB-SVM achieved similar classification rate. This study indicated that the LULC 

classification accuracy using PB-MLC and OB-SVM is 82% and 89% respectively. A 

combination of atmospheric correction, pansharpening, and OB-SVM could offer promising 

LULC maps from WorldView-2 multispectral and panchromatic images. 

 

Key words: LULC, remote sensing, object-based image analysis, pixel-based image analysis, 

Maximum Likelihood Classifier (MLC), Support Vector Machine (SVM) 

 

 

 

 

 

 

 



  

Introduction 

Changes of land use and land cover (LULC) affect atmospheric, climatic, and biological 

spheres of the Earth [1]-[3]. Carbon emission has been more and more significant since last 

decades, leading global warming and extreme climate events. The changes of LULC could be 

caused by natural and/or anthropogenic disturbances such as stochastic events (storms and 

forest fires), landslides, and deforestations as well as the climate-change-derived influences. 

Fortunately, due to the photosynthesis, the plants are able to capture and store the carbon 

dioxide (i.e., carbon sequestration) which helps to reduce impacts of global warming. 

Therefore, constant monitors of terrestrial ecosystems play an important role in success of 

sustainable forest management and particularly carbon emission reduction caused by 

deforestation and degradation of forest ecosystem. 

Carbon sequestration is generally presented in biomass [4], [5] or net primary production 

(NPP) [6], [7]. The amounts uptakes from or releases to the atmosphere through plants’ 

photosynthesis (the gross primary production, GPP) or respiration (Ra) respectively. 

Specifically, NPP is positive if GPP is larger than Ra while negative inversely. Changes of 

NPP can greatly affect global carbon balance and climate change [6], which has been a key 

issue of ecological studies since last decades [8]. 

Recently, many studies have concerned prediction of regional NPP [9]-[16], and many 

studies indicated that the potential of carbon sequestration could be achieved by land 

management practices, such as sustainable timber production and farm afforestation [5], 

[17]-[19]. Because of constant change of NPP among terrestrial ecosystems or LULC types 

[8], an accurate LULC map is very important to support a precise estimation of NPP or carbon 

sequestration. The high resolution LULC maps play critical roles on the issues of: 1) reducing 

emission from deforestation and forest degradation (REDD) [20]-[22], 2) presenting accurate 

large-scale LULC map and predicting LULC changes [23]-[25], 3) detecting the response of 



  

vegetation to environmental factors and estimating the spatiotemporal variations of NPP at 

multiple spatial scales [8], 4) predicting land surface temperature [26], and 5) calculating the 

large-scale/subcanopy-based heterogeneous evapotranspiration [27].  

The recent remote sensing technologies could provide simultaneously high-resolution 

(meter-scale) multispectral image (MS) and very-high-resolution (submeter-scale) 

panchromatic image (PAN). The MS and PAN images can be integrated by pansharpening 

techniques to produce submeter-scale MS image. However, a potential problem of noise might 

come from pansharpening due to heterogeneous components in the area of MS image pixels 

[28] and this problem might lower accuracy of biophysical parameters estimation. The noise 

problem would be worse in landscapes with complicated LULC or high-variant-density 

vegetation canopies because measurement of biophysical parameters have nonlinear mixes of 

two or more materials (e.g., soil and vegetation canopy) [28].  

The effects of atmospheric correction or pansharpening were demonstrated in many 

literature studies. Their applications included LULC mapping [29], [30], forest volume 

estimation [31], land surface temperature [32], [33], and coastal dynamics [34]. Nevertheless, 

few of them have concerned the relationship between the LULC classification accuracy and 

pansharpening or atmospheric correction. Therefore, the objectives of this manuscript are to 

examine the interaction effect of atmospheric correction and pansharpening processing on 

LULC classification accuracy. This paper utilized WorldView-2 multispectral and 

panchromatic images to conduct systematic comparisons of LULC mapping using 

Pixel-Based Maximum Likelihood Classifier (PB-MLC) [35] and Object-Based Support 

Vector Machine (OB-SVM) [36]. 

 

Materials and methods 

2.1 Materials 



  

A WorldView-2 image taken at UTC time 02:48:38.20 on November 30, 2011 was used for 

this study. It contains an 8-bands multispectral image with spatial resolution of 2.0 m per pixel 

and 1-band panchromatic image with spatial resolution of 0.5 m per pixel. Spectral 

specifications of the multispectral image are Coastal: 400~450 nm, Blue: 450~510 nm, Green: 

510~580 nm, Yellow: 585~625 nm, Red: 630~690 nm, Red Edge: 705~745 nm, Near Infrared 

1 (NIR 1): 770~895 nm, Near Infrared 2 (NIR 2): 860~1040 nm, and the single band of 

panchromatic image is 450~800 nm. Figure 1 demonstrates the geographical location of the 

study site in southern Taiwan. The types of IPCC (Intergovernmental Panel on Climate 

Change) LULC contained in this area are forest, grassland, farm, wetland, residential/urban, 

and bareland. Due to the high resolution of the WorldView-2 image, detail of LULC could be 

revealed by visual image interpretation. The total classes could be therefore divided into 10 

classes, which are forest, grassland, farm (cropping farm), facility farm (protected-culture 

farm or greenhouse-based farming system), river and lake (two subclasses of wetland), urban, 

bareland, and stone (riverbed) and sandy soil (two subclasses of bareland).  

 

{Figure 1 could be inserted here} 

 

2.2 Image processing 

The original WorldView-2 multispectral image is delivered in 16-bit formatted digital 

number (DN). In this manuscript, the DN image was used to restore the radiance image by the 

gain and offset of each band that accompanied with the image header file. Then, a radiation 

transfer model-based algorithm [37]-[39] bundled as the FLAASH (Fast Line-of-sight 

Atmospheric Analysis of Spectral Hypercubes) module in ENVI Software is applied to correct 

the atmospheric effects for the reflectance image. FLAASH model has been demonstrated that 

it works well in the atmospheric correction of multispectral image [40] and hyperspectral 



  

image [41], [42]. Finally, the method “PanSharp” using least squares algorithm [43] that 

bundled in PCI Software is applied for image fusion. As a result, we have totally four 

experimental images, which include DN with/without pansharping and reflectance 

with/without pansharpening. In the following steps, training samples of the LULC classes 

would be selected by random sampling method and evaluated by transformed divergence. 

PB-MLC and OB-SVM would be carried out for the classification. Overall accuracy and 

kappa coefficient of the classifications are further tested using factorial ANOVA. Figure 2 

presented the overall flowchart of the proposed framework. 

 

{Figure 2 could be inserted here} 

 

2.2.1 Atmospheric correction 

As indicated in the radiation transfer model-based atmospheric correction algorithm, the 

spectral radiance (L*) can be expressed as the function of three components in Equation (1). 

The first term is the radiance that is reflected from the surface and travels directly into the 

sensor. The second term is the adjacency effect which is the radiance form the surface that is 

scattered by the atmosphere into the sensor, and the third term is the radiance backscattered by 

the atmosphere without reaching the surface. In Equation (1), ρ is the pixel surface reflectance, 

cρ
 is an average surface reflectance for the surrounding region, S is the spherical albedo of 

the atmosphere (capturing the backscattered surface-reflected photons), 
*
aL

 is the radiance 

backscattered by the atmosphere without reaching the surface, and A, B are surface 

independent coefficients that vary with atmospheric and geometric conditions.  

** )1/()1/( accc LSBSAL +−+−= ρρρρ
                         (1) 

 



  

2.2.2 Pansharpening 

Pansharpening, also called image fusion, refers to the process to integrate the geometric 

detail of a high spatial resolution panchromatic image with spectral (color) information from a 

low spatial resolution multispectral image [43]-[45]. Although several related algorithms had 

been developed in the past, only few are widely used for commercial or industrial purposes. 

According to a comparable study of Zhang and Mishra [46] and Du et al. [47], the PanSharp 

technique bundled in the software PCI provides the best fusion quality for all the sensors, 

including IKONOS, GeoEye-1, QuickBird, and WorldView satellites. The PCI-PanSharp 

algorithm is based on the least number of squares to approximate pixel-value relationship 

between the original MS image and PAN image for the image fusion. Due to the least squares 

technique, PanSharp is able to find the best fit from the spectral values of the image bands 

being fused and to adjust contribution of individual band for reduction of color distortion. 

Besides it also eliminates the problem of dataset dependency (i.e. reduce the influence of 

dataset variation) [46]. Thus, the PCI-PanSharp technique was therefore directly applied in 

this manuscript to fuse the multispectral image and the panchromatic image. 

 

2.3 Object-based classification by support vector machine 

2.3.1 Extraction of LULC objects using multiresolution segmentation method 

This study concerned the mapping of forest, grassland, farm, facility farm, bareland, stone, 

sand, river, lake, and urban areas. The multiresolution segmentation algorithm [48] was first 

applied to construct objects in which the 8 bands of the WorldView-2 image were used 

simultaneously with equal weighting such as 1.0. Since these LULC objects normally have 

big variations in spectral features, a two-stage segmentation was applied to extract the objects 

of LULC in the study site. In the first stage, the multiresolution segmentation was 

implemented to extract the urban, bareland, stone, sandy soil, and grassland using the 



  

parameter values of 30, 0.9 and 0.5 for the scale, color, and compactness respectively. A small 

level of scale helps precisely delineating small objects which particularly happen at the areas 

of high developed areas. As a result, the urban, bareland, stone, and sandy soil could be well 

segmented. However, other types of LULC that generally have big variation of spectral values 

will be over-segmented. In the second stage, objects segments were merged and re-segmented 

using a large level of scale to extract the forest, farm, facility farm, lake, and river. The second 

stage took 350, 0.9, and 0.5 as the parameter of scale, color, and compactness respectively. 

Basically, the value of the scale parameter depends on the dynamic range of spectral values 

and can be determined based on a series of training and learning processes. Image objects are 

shaped based on local variations of spectral values. Therefore, in contrast to the shape, 

spectral information of objects can be more deterministic to classification. While for cases of 

objects with similar spectral information, shape can contribute marginal effect in the 

determination of object attributes. The value of color and compactness can also be determined 

by training and learning for a particular satellite image. 

 

2.3.2 Example-based object classification using SVM 

Examples of LULCs’ objects were then selected via visual image interpretation to derive 

the objective features for Support Vector Machine (SVM). Those features applied in the 

example-based classification contained spectral, textural, and spatial attributes. Please refer to 

Table 1 for detail of the feature attributes. This procedure is called Object-Based SVM 

classification (OB-SVM).  

 

Table 1. Attributes definition of the object features used in the LULC classification. 

(Please refer to the attachment: Table1.docx) 

 



  

Support Vector Machine (SVM) is a machine learning algorithm based on linear 

discriminant for binary classification problems. The major advantage of SVM is that it does 

not require many training samples for reliable statistical characteristics of each class. Only a 

few key training samples are required to form a hyperplane. All the testing samples will be 

further classified based on the hyperplane by dividing their boundaries in feature space and 

assigning each sample into the predicted class based on which side they fall on. For a 

supervised binary classification (only two classes will be mapped) problem, if the training 

data are represented by {xi, yi}, i= 1, 2, …, N, and yi ∈ {-1, 1}, where N is the number of 

training samples, yi=+1 for class 1ω  and yi =-1 for 2ω . There should have at least a 

hyperplane (linear or non-linear) that can separate two classes. As shown in figure 3, the 

pixels that place at the edge of the class are the support vectors used for the feature training. If 

a pixel that locates beyond the optimal margin, for example, the two black dots and the two 

white circles mixed in the opposite feature will be misclassified.  

 

{Figure 3 could be inserted here} 

 

The generalized binary SVM classifier (Equations 2-3) maps the input vector x into a 

high-dimensional feature space and then constructs the optimal separating hyperplane in that 

space. In Equation (2), the iλ
 are the Lagrange multipliers; iy

 are the labels of classes (+1 

for class 1ω  and -1 for class 2ω ); ix
 are the support vectors that correspond to non-zero 

Lagrange multipliers; and x is the input vector (candidate pixel) that need to determine its 

class label; 0w
 is the bias or error of the hyperplane fitting; 

),( xxK i  is the kernel function 

(Equation 3) that gives the weights of nearby data points in estimating target classes. 
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The most popular kernels are polynomial, radial basis function (RBF), and sigmoid. As 

indicated by Hsu et al. [50], the RBF kernel is a reasonable choice because it maps samples 

into a higher dimensional space and can handle the case when the relation between class 

labels and attributes is nonlinear. Based on the research results of Huang et al. [51] and 

Mercier and Lennon [49], Tzotsos and Argialas [36] also indicated that the RBF works very 

effective and accurate in classification of remote sensing data. The strength of RBF kernel has 

been further demonstrated recently in several articles [50], [52]-[53]. In addition, RBF-based 

SVM has been applied to detect fire scars in forest land [54], [55] and land cover 

classification [56] with satisfied results. This manuscript therefore adopted the RBF as the 

SVM kernel for LULCs training and classification. 

In general, the LULC classification deals with the mapping problem of more than two 

classes. The binary SVM classifier can work as a multiclass classifier by combining several 

binary SVM classifiers in several methods, such as one-against-all, one-against-one, and 

directed acyclic graph (DAG). Hsu and Lin [57] had shown that one-against-one and DAG 

methods are more suitable for practical use than one-against-all, so the one-against-one 

method was applied to the object-based LULC classification in this study. Suppose that there 

are k classes in an image, there at least k(k-1)/2 pairs of binary SVM classifiers should be 

applied to each pair of classes. In this study, the binary SVM classification for all of the 

possible pairs between any of two classes were done where the values for the RBF kernel 

parameters, i.e., gamma (γ) and penalty (C) were assigned 0.01 and 100 respectively based on 

a prior learning; and then the Max-Wins Policy was exploited to determine each class of the 

candidate objects.  



  

 

2.4 Pixel-based classification by maximum likelihood classifier 

Maximum Likelihood Classifier (MLC) is the most popular statistical classifier used for the 

standard of evaluation. Since the classification of MLC is made on individual pixels, the 

LULC classification using the MLC classifier in this manuscript is therefore called the 

Pixel-Based MLC (PB-MLC). Training samples of variant LULC were collected based on 

visual image interpretation for signature training and further evaluated using the transformed 

divergence to determine the suitable signatures of LULCs for classification.  

 

2.5 Determination of test samples for classification accuracy assessment 

Suppose that the sampling error rate (α) is 0.01, the study site has the number of pixels N, 

which has 2,864,958 pixels for image with 2m resolution or 49,439,808 pixels for image with 

0.5 m resolution. According to the maximum coefficient of the band variation in multispectral 

image (CV), the minimum number of test samples, which is 10,749 pixels in our case could be 

determined by Equation (4). 

A stratified random sampling without replacement was carried out to collect test samples 

for accuracy assessment. In the sampling process, 100 random points were first randomly 

selected as the seeds. A minimum requirement for each class should has at least 10 points in 

order to overcome the prevalence effect [58], [59], and then the test samples were determined 

by expanding each of seeds to an area with a window size of 19x19 pixels. A total number of 

35,876 test pixels were applied for the assessment of LULC classification accuracy. In the 

stratified random sampling of test samples, a sample previously selected as training sample 

would be excluded as test sample. Ground truth in the extended area is assigned pixel by 

pixel.  
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Briefly, the classification was first conducted based on the 10-classes (forest, grassland, 

farm, facility farm, urban, bareland, stone, sandy soil, lake, and river), and then a post 

classification was applied to combine the subclass(es) to generate the LULC map. For 

example, the classes, stone, sandy soil, and bareland would be recoded to bareland, and the 

lake and river would be recoded to wetland since their attributes are identical. While the farm 

and facility farm were kept as two separated classes due to different attributes. Classification 

results of both OB-SVM and PB-MLC were evaluated by the indices, overall accuracy (OA) 

and kappa coefficient. The accuracy assessment was made on the test samples which were 

collected by stratified random sampling where the stratum is determined according to the 

image-interpreted information of LULCs.  

 

Results 

3.1 Spectral separability of LULC training samples 

The pixel samples collected for training are forest, grassland, urban, lake, river, bareland, 

sandy soil, stone, farm, and fac-farm (facility farm) (Table 2). Some of the LULC classes were 

divided into several sub-classes because they are separable by a priori knowledge. The 

transformed divergence (TD) is 2000 in the upper triangle entries of Table 2 indicating each 

corresponding pair has very good separability in the original multispectral image. On the 

contrary, the lower triangle entries have worse separability with the TD ranging from 1157 to 

1999 in the pansharpened multispectral image. The worse performance could probably be 

caused by many factors, such as mixed pixels, physical and/or biophysical status of the classes. 

In contrast to the spectral confusion in pansharpened image shown in Table 2, the spectral 

separability can be obviously improved if atmospheric correction is applied prior to the 



  

pansharpening process. This improvement can be seen in each of the lower triangle entries in 

Table 3, which has a transformed divergence 2000 indicating the LULC.  

To summarize the combined effects of both atmospheric correction and pansharpening in 

the view of spectral separability, pansharpening would lower the spectral separability of 

classes while the atmospheric correction would increase. Practically, it is not necessary to 

implement atmospheric correction if a classification was the only concern. Nevertheless, the 

atmospheric correction was required to obtain for the following object determination, so it 

should be implemented prior to the pansharpening process. 

 

Table 2. Transformed divergence matrices of LULC training samples for the original digital 

number images – before atmospheric correction processing (upper triangle: non-pansharpened, 

lower triangle: pansharpened) 

(Please refer to the attachment: Table2.doc) 

 

Table 3. Transformed divergence matrixes of LULC training samples for the reflectance 

image – after atmospheric correction processing (upper triangle: non-pansharpened, lower 

triangle: pansharpened) 

(Please refer to the attachment: Table3.doc) 

 

3.2 Generalized spectral characteristics of the LULC classes 

Partially level-up of the spectral curves in the digital number image were shown in Fig. 4(a). 

The atmospheric effects were successfully removed by atmospheric correction using 

FLAASH with the radiation transfer model. The derived reflectance curves of forest, 

grassland, wetland, urban, bareland, and farm would be closer to their typical curves after 

atmospheric correction (Fig. 4(b)). Vegetational LULCs (forest, farm, and grassland) have 



  

typical absorption features in blue and red band, and plateau in near infrared region. In the 

region from red to near infrared, a reflectance curvature can be defined to identify the 

grassland from forest and farm. Briefly, grassland shows a larger reflectance in the visible 

region with a lower reflectance in the near infrared region. As a result, grassland shows a 

larger curvature than farm and forest. Farm shows a higher reflectance than forest along the 

visible-near infrared region, and a larger curvature in red-near infrared region than forest. 

Although urban and bareland have very similar reflectance curve, urban significantly shows a 

higher amount of reflectance in the visible-near infrared region. Wetland/water body shows a 

very good absorption in near infrared which can be useful to distinguish the wetland from the 

other kinds of LULCs. 

 

{Figure 4 could be inserted here} 

 

Discussion 

4.1 Classification accuracy comparison for variant processing and classifiers 

Figure 5 (a-b) shows the classified LULC map derived from the original DN image without 

pansharpening. It is found that many pixels in the center portion of the image were classified 

as residential/urban (the red class). This situation was improved by pansharpening which 

significantly upgrades the pixel resolution to 0.5 m. A critical block pattern in lower right 

portion of the study area can be seen from Fig. 5(c) using PB-MLC. This result could be 

further improved due to the clear block pattern examined by OB-SVM as shown in Fig. 5(d). 

Bareland surrounding the residential/urban area is another example to determine the strength 

of OB-SVM in Fig. 5(d).  

The class confusion matrix is shown in Table 4 along with error matrix of LULC classes in 

Table 5. As it can be seen in Table 6, the OA of LULC Classification using PB-MLC was 



  

between 78-81% and 79-82% for the original image and atmospheric corrected image. The 

accuracy difference between the image with or without atmospheric correction was around 

1%. The insignificant improvement showed that atmospheric correction provided limited 

benefits. It was due to the spectral separability of between-classes is originally excellent in the 

DN image (Tables 2 and 3). The result also demonstrated that atmospheric correction caused 

no negative influence to the LULC classification at the same level of image resolution. In the 

cases of OB-SVM classification, the OA difference between the images with or without 

atmospheric correction was also around 1%, which agrees with the results of PB-MLC. This 

fact is duplicated by kappa coefficient and thus indicates that atmospheric correction plays an 

insignificant role in LULC classification. 

 

{Figure 5 could be inserted here} 

 

Table 4. Error matrix of the PB-MLC classification on atmospherically-corrected and 

pansharpened reflectance image 

(Please refer to the attachment: Table4.doc) 

 

Table 5. Error matrix of the OB-SVM classification on atmospherically-corrected and 

pansharpened reflectance image 

(Please refer to the attachment: Table5.doc) 

 

Table 6 tabulates variant effects of pansharpening on LULC classification in corresponding 

to the classifiers. An increment of OA around 3% and 15% was achieved by pansharpening 

with PB-MLC and OB-SVM respectively. This kind of amelioration effect can be reproduced 

with or without atmospherically correction. Again, the kappa coefficient also agrees with the 



  

results of OA at an improvement of 3% and 18% respectively. For the classifiers’ efficient 

point of view, this result indices OA and kappa coefficient achieved by OB-SVM is lower than 

PB-MLC at a level of 5% in the non-pansharpened with/without atmospheric correction; 

while on the contrary OB-SVM is higher than PB-MLC at a level of 7% in the pansharpned 

image with/without atmospheric correction.  

An object in an image is a group of pixels with similar spectral values that can be 

interpreted as an identifiable or a single material. If a real object with an extent smaller than 

the pixel size of an image, the object will be mixed or confused completely with the prevailing 

target(s) next to or surround with it. Furthermore, the object could be identified when very 

high resolution image was fused from the panchromatic band. Therefore, the accuracy 

difference was obvious with or without pansharpening. A two-factor factorial design, 

pansharpening (Factor A) and classifier (Factor B), can be used to examine statistically their 

joint effects. As shown in Table 7, the Factor B’s effect has concluded to be insignificant at the 

0.05 probability level. On the other hand, the effect of Factor A and the interaction of Factors 

A and B are significant at the same probability level. In brief, pansharpening processing 

increases spatial resolution of multispectral image and help to achieve a superior LULC 

classification accuracy. The average accuracy for the classification with pansharpened image 

is 84.1% which is significantly better than 74.1% without pansharpened image respectively 

(Table 8). Overall, the best accuracy is 87.5% and 80.6% achieved by OB-SVM and PB-MLC 

for the pansharpened image, then the second is 76.3% made by PB-MLC for the 

non-pansharpened image, and the third is 71.8% made by OB-SVM for the non-pansharpened 

image (Table 8).  

 

Table 6. Comparison of LULC classification accuracy using variant processing and classifiers 

(Please refer to the attachment: Table6.doc) 



  

 

Table 7. ANOVA table of the two-factor factorial experiment. 

(Please refer to the attachment: Table7.doc) 

 

Table 8. Least significant difference (LSD) method determined grouping of the average 

accuracy for classification being with/without pansharpening #. 

(Please refer to the attachment: Table8.doc) 

 

4.2 A regime of image processing for quantitative measurements and temporal change analysis 

LULCs classification is an issue of descriptive attributes mapping. It is generally 

accomplished directly using the satellite image delivered in digital numbers (DN) or gray 

levels. This kind of image analysis can be implemented by visual interpretation and 

digitization or automated digital analysis techniques. The analysis is generally performed by 

analyst generating a qualitative assessment on digital image in the field of environmental 

remote sensing and histopathology [60]. The image analysis is defined as qualitative-based 

analysis due to its qualitative outputs [61]. 

Due to the pixel DN of satellite image will be definitively influenced by daily atmospheric 

condition as it is being taken, the satellite images of a particular area captured on variant days 

are considerable from various sources. Without advanced image standardization such as 

atmospheric correction, the images would be not able to meet the consistency, a criterion of 

measuring the geospatial data quality in metric measurement [62]. Compare with the LULC 

classification, analysis of quantitative measurements and temporal changes of the environment 

have become the major issue of remote sensing since last decades. For example, the 

quantitative-analysis of the terrestrial ecosystem management involves at least 

biomass/volume/carbon stocks, land greenness coverage or leaf area index, ecosystem 



  

primary productivity, chlorophyll content, phenology, water deficiency or drought stress, fire 

risk and damage severity, and forest degradation etc. The analysis of such quantitative 

attributes is generally accomplished by numerical modeling techniques. Atmospheric 

correction offers standardized reflectance by removing the effects from atmospheric and 

surrounding effects. Therefore, it can meet the need of quantitative attributes prediction. 

Earth’s science study using remote sensing images can be beneficial particularly for temporal 

biophysical parameters of the surfaces. For example, the prediction of forest 

volume/biomass/carbon stocks can be done precisely and logically using 

atmospheric-corrected-reflectance derived vegetation index such as NDVI (Normalized 

Difference Vegetation Index) and SAVI (Soil-Adjusted Vegetation Index). Furthermore, 

atmospheric correction would not induce negative impacts on LULC classification; it also can 

underpin the basic requirement of quantitative attributes analysis. So, a regime of satellite 

image processing that can be adopted for simultaneous use in LULC classification and 

analysis of quantitative measurements is therefore suggested to apply atmospheric correction 

for standardization and then pansharpening techniques for the spatial resolution improvement.  

 

Conclusions  

The LULC’s classification accuracy of both classifiers PB-MLC and OB-SVM using 

WorldView-2 multispectral image is not related to atmospheric correction at the level of 

2-meter image resolution. However, the accuracy can be significantly improved by 

pansharpening using the multispectral and panchromatic images at the level of 0.5-meter 

image resolution. If the multispectral image has been atmospheric corrected and pansharpened 

prior to classification, OB-SVM and PB-MLC can achieve the best classification with an 

overall accuracy of 89% and 82%. The difference between OB-SVM and PB-MLC is 7% 

which is identical to the one observed by Feyzizadeh and Helali [63] using OB-NNC 



  

(Object-Based Nearest Neighbor Classifier) and PB-MLC. This result appears that support 

vector machine is more suitable than maximum likelihood classifier for LULC classification; 

it also agrees with the LULC classification made by of Srivastava et al. [64] using MODIS 

and TM images.  

Although Duro et al. [65] concluded that there is no advantage to preferring one image 

analysis approach over another for the purposes of mapping broad land cover types in 

agricultural environments using medium spatial resolution earth observation imagery, we 

would suggest that the object-based support vector machine classifier can achieve satisfied 

accuracy of LULC classification with very high resolution multispectral image. Recall that the 

terrestrial ecosystems such as forest, farmland, and grassland are generally distributed with 

high spatio-temporal variations [8], [66]. In order to outreach the valuable applications of 

remote sensing images, it is recommended to have multispectral image radiometrically 

corrected and then be pansharpened. The resulted very-high-resolution reflectance image can 

be directly applied to carry out LULC classification and derive temporally quantitative 

information by image analysis. Most important, it can offer spatial details to account for 

precise information of the natural resources and environmental observations of the Earth. 
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Figure captions: 



  

Fig. 1. Study site and the locations of test samples for classification accuracy assessment. 

Fig. 2. Image analysis and works flow applied for LULC classification. 

Fig. 3. Hyperplanes for binary SVM classifier with linear separable case (a) and non-linear 

separable case (b). (modified from [49]) 

Fig. 4. An example of the spectral curves of forest, grassland, wetland, urban, bareland, and 

farm that derived from (a) the 16-bit original digital number image and (b) the 

atmospherically corrected 1000x-rescaled reflectance image. 

Fig. 5. LULC classification map derived from the original 2m-pixel size DN image by the 

methods of (a) PB-MLC and (b) OB-SVM, and the ones derived from the 

atmospherically-corrected and pansharpened reflectance image by the methods of (c) 

PB-MLC and (d) OB-SVM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table captions: 



  

Table 1. Attributes definition of the object features used in the LULC classification. 

Table 2. Transformed divergence matrices of LULC training samples for the original digital 

number images – before atmospheric correction processing (upper triangle: non-pansharpened, 

lower triangle: pansharpened) 

Table 3. Transformed divergence matrixes of LULC training samples for the reflectance 

image – after atmospheric correction processing (upper triangle: non-pansharpened, lower 

triangle: pansharpened) 

Table 4. Error matrix of the PB-MLC classification on atmospherically-corrected and 

pansharpened reflectance image 

Table 5. Error matrix of the OB-SVM classification on atmospherically-corrected and 

pansharpened reflectance image 

Table 6. Comparison of LULC classification accuracy using variant processing and classifiers 

Table 7. ANOVA table of the two-factor factorial experiment. 

Table 8. Least significant difference (LSD) method determined grouping of the average 

accuracy for classification being with/without pansharpening #. 
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Table 1. Attributes definition of the object features used in the LULC classification. 

Features Attribute Description 

Spectral Spectral_Mean Mean value of the pixels comprising the region in band i. 

 Spectral_Max Maximum value of the pixels comprising the region in band i. 

 Spectral_Min Minimum value of the pixels comprising the region in band i. 

 Spectral_STD Standard deviation value of the pixels comprising the region in 

band i. 

Textural Texture_Range Average data range of the pixels comprising the region inside 

the kernel (whose size you specify with the Texture Kernel 

Size parameter in segmentation). 

 Texture_Mean Average value of the pixels comprising the region inside the 

kernel. 

 Texture_Variance Average variance of the pixels comprising the region inside the 

kernel. 

Spatial Compactness A shape measure that indicates the compactness of the 

polygon. A circle is the most compact shape with a value of 1 / 

pi. The compactness value of a square is 1/ 2(sqrt(pi)). 

Compactness = Sqrt (4 * Area / pi) / outer contour length. 

 Roundness A shape measure that compares the area of the polygon to the 

square of the maximum diameter of the polygon. The 

"maximum diameter" is the length of the major axis of an 

oriented bounding box enclosing the polygon. The roundness 

value for a circle is 1, and the value for a square is 4 / pi.  

Roundness = 4 * (Area) / (pi * Major_Length
2
).  

 Form_Factor A shape measure that compares the area of the polygon to the 

square of the total perimeter. The form factor value of a circle 

is 1, and the value of a square is pi / 4.  

 Rectangular_Fit A shape measure that indicates how well the shape is described 

by a rectangle. This attribute compares the area of the polygon 

to the area of the oriented bounding box enclosing the polygon. 

The rectangular fit value for a rectangle is 1.0, and the value 

for a non-rectangular shape is less than 1.0.  

 Main_Direction The angle subtended by the major axis of the polygon and the 

x-axis in degrees. The main direction value ranges from 0 to 

180 degrees. 90 degrees is North/South, and 0 to 180 degrees is 

East/West.  

 



  

Table 2. Transformed divergence matrices of LULC training samples for the original digital 

number images – before atmospheric correction processing (upper triangle: 

non-pansharpened, lower triangle: pansharpened) 

 Forest Sandy soil Grassland Lake River Stone Urban Bareland Farm Fac-farm 

Forest  2000 2000 2000 2000 2000 2000 2000 2000 2000 

Sandy soil 1979  2000 2000 2000 2000 2000 2000 2000 2000 

Grassland 1999 1987  2000 2000 2000 2000 2000 2000 2000 

Lake 1999 1998 1746  2000 2000 2000 2000 2000 2000 

River 1999 1999 1561 1811  2000 2000 2000 2000 2000 

Stone 1999 1999 1993 1996 1576  2000 2000 2000 2000 

Urban 1999 1991 1752 1812 1157 1890  2000 2000 2000 

Bareland 1999 1938 1873 1874 1925 1998 1522  2000 2000 

Farm 1999 1998 1678 1954 1367 1831 1447 1713  2000 

Fac-farm 1999 1999 1994 1997 1955 1778 1985 1999 1974  

 

 



  

Table 3. Transformed divergence matrixes of LULC training samples for the reflectance 

image – after atmospheric correction processing (upper triangle: non-pansharpened, lower 

triangle: pansharpened) 

 Forest Sandy soil Grassland Lake River Stone Urban Bareland Farm Fac-farm 

Forest  20000 2000 2000 2000 2000 2000 2000 1999 2000 

Sandy soil 2000  2000 2000 2000 2000 2000 2000 2000 2000 

Grassland 2000 2000  2000 2000 2000 2000 2000 2000 2000 

Lake 2000 2000 2000  2000 2000 2000 2000 2000 2000 

River 2000 2000 2000 2000  2000 2000 2000 2000 2000 

Stone 2000 1999 2000 2000 2000  2000 2000 2000 2000 

Urban 2000 2000 2000 2000 2000 2000  2000 2000 2000 

Bareland 2000 2000 2000 2000 2000 2000 2000  2000 2000 

Farm 1999 2000 1999 2000 2000 2000 2000 2000  2000 

Fac-farm 2000 2000 2000 2000 2000 2000 2000 2000 2000  

 

 



  

Table 4. Error matrix of the PB-MLC classification on atmospherically-corrected and 

pansharpened reflectance image 

Class Forest Grassland Wetland Urban Bareland Farm Fac-farm Total 

Producer’s 

accuracy 

User’s 

accuracy 

Forest 5521 2 0 0 140 0 0 5663 97.49 85.2 

Grassland 0 2745 0 0 299 203 0 3247 84.54 62.5 

Wetland  0 0 2749 0 0 0 0 2749 100.00 84.61 

Urban 0 5 139 4335 73 1954 257 6763 64.10 99.20 

Bareland 959 1573 0 5 6684 30 55 9306 71.82 91.04 

Farm 0 67 361 13 8 4243 0 4692 90.43 65.96 

Fac_farm 0 0 0 17 138 3 3298 3456 95.43 91.36 

Total 6480 4392 3249 4370 7342 6433 3610 35876   

 

 



  

Table 5. Error matrix of the OB-SVM classification on atmospherically-corrected and 

pansharpened reflectance image 

Class Forest Grassland Wetland Urban Bareland Farm Fac-farm Total 

Producer’s 

accuracy 

User’s 

accuracy 

Forest 6374 1 0 0 0 68 0 6443 98.93 98.36 

Grassland 25 2731 0 1 13 347 0 3117 87.62 62.18 

Wetland  0 0 2875 37 0 0 0 2912 98.73 88.49 

Urban 0 0 0 3686 280 0 7 3973 92.78 84.35 

Bareland 4 62 372 633 5950 39 37 7097 83.84 92.49 

Farm 77 1595 0 8 4 6886 8 8578 80.28 93.79 

Fac_farm 0 3 2 5 186 2 3558 3756 94.73 98.56 

Total 6480 4392 3249 4370 6433 7342 3610 35876   

 

 

 



  

Table 6. Comparison of LULC classification accuracy using variant processing and 

classifiers 

Classification 

methods 

Original DN Image 

(without atmospheric correction) 

Reflectance Image  

(atmospherically corrected) 

without 

Pansharpening 

with 

Pansharpening 

without 

Pansharpening 

with 

Pansharpening 

 Overall Kappa Overall Kappa Overall Kappa Overall Kappa 

PB-MLC 78.32% 0.7434 81.05% 0.7756 78.99% 0.7509 82.44% 0.7920 

OB-SVM 73.03% 0.6848 88.40%
*
 0.8622 75.17% 0.7056 89.36%

#
 0.8735 

* and # indicates the better accuracy for the classified LULC map shown in Fig. 5(c) and 

5(d). 

 

 



  

Table 7. ANOVA table of the two-factor factorial experiment. 

Sources Sum of Square df Mean Square F Sig. Probability 

Model 10.337 4 2.584 2967.660 <0.001 

Sharpening (A)  0.060 1 0.060 68.928 <0.001 

Classifier (B)  0.000 1 0.000 0.459  0.511 

A * B  0.005 1 0.005 5.627  0.035 

Error  0.010 12 0.001   

Total 10.348 16    

 

 



  

Table 8. Least significant difference (LSD) method determined grouping of the average 

accuracy for classification being with/without pansharpening #. 

  Without pansharpening With pansharpening 

  PB-MLC OB-SVM PB-MLC OB-SVM 

Interaction (A*B) Average accuracy  0.763 0.718 0.806 0.875 

 Grouping b a c c 

Effect of Factor A Average accuracy 0.741 0.841 

 Grouping a b 

# Different alphabets in the grouping of “Interaction” and “Effect of Factor A” indicate the 

corresponding average accuracy between the items is statistically different at the 0.05 

probability level. 
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Table 1. Attributes definition of the object features used in the LULC classification. 

Features Attribute Description 

Spectral Spectral_Mean Mean value of the pixels comprising the region in band i. 

 Spectral_Max Maximum value of the pixels comprising the region in band i. 

 Spectral_Min Minimum value of the pixels comprising the region in band i. 

 Spectral_STD Standard deviation value of the pixels comprising the region in 

band i. 

Textural Texture_Range Average data range of the pixels comprising the region inside 

the kernel (whose size you specify with the Texture Kernel 

Size parameter in segmentation). 

 Texture_Mean Average value of the pixels comprising the region inside the 

kernel. 

 Texture_Variance Average variance of the pixels comprising the region inside the 

kernel. 

Spatial Compactness A shape measure that indicates the compactness of the 

polygon. A circle is the most compact shape with a value of 1 / 

pi. The compactness value of a square is 1/ 2(sqrt(pi)). 

Compactness = Sqrt (4 * Area / pi) / outer contour length. 

 Roundness A shape measure that compares the area of the polygon to the 

square of the maximum diameter of the polygon. The 

"maximum diameter" is the length of the major axis of an 

oriented bounding box enclosing the polygon. The roundness 

value for a circle is 1, and the value for a square is 4 / pi.  

Roundness = 4 * (Area) / (pi * Major_Length
2
).  

 Form_Factor A shape measure that compares the area of the polygon to the 

square of the total perimeter. The form factor value of a circle 

is 1, and the value of a square is pi / 4.  

 Rectangular_Fit A shape measure that indicates how well the shape is described 

by a rectangle. This attribute compares the area of the polygon 

to the area of the oriented bounding box enclosing the polygon. 

The rectangular fit value for a rectangle is 1.0, and the value 

for a non-rectangular shape is less than 1.0.  

 Main_Direction The angle subtended by the major axis of the polygon and the 

x-axis in degrees. The main direction value ranges from 0 to 

180 degrees. 90 degrees is North/South, and 0 to 180 degrees is 

East/West.  

 



  

Table 2. Transformed divergence matrices of LULC training samples for the original digital 

number images – before atmospheric correction processing (upper triangle: 

non-pansharpened, lower triangle: pansharpened) 

 Forest Sandy soil Grassland Lake River Stone Urban Bareland Farm Fac-farm 

Forest  2000 2000 2000 2000 2000 2000 2000 2000 2000 

Sandy soil 1979  2000 2000 2000 2000 2000 2000 2000 2000 

Grassland 1999 1987  2000 2000 2000 2000 2000 2000 2000 

Lake 1999 1998 1746  2000 2000 2000 2000 2000 2000 

River 1999 1999 1561 1811  2000 2000 2000 2000 2000 

Stone 1999 1999 1993 1996 1576  2000 2000 2000 2000 

Urban 1999 1991 1752 1812 1157 1890  2000 2000 2000 

Bareland 1999 1938 1873 1874 1925 1998 1522  2000 2000 

Farm 1999 1998 1678 1954 1367 1831 1447 1713  2000 

Fac-farm 1999 1999 1994 1997 1955 1778 1985 1999 1974  

 

 



  

Table 3. Transformed divergence matrixes of LULC training samples for the reflectance 

image – after atmospheric correction processing (upper triangle: non-pansharpened, lower 

triangle: pansharpened) 

 Forest Sandy soil Grassland Lake River Stone Urban Bareland Farm Fac-farm 

Forest  20000 2000 2000 2000 2000 2000 2000 1999 2000 

Sandy soil 2000  2000 2000 2000 2000 2000 2000 2000 2000 

Grassland 2000 2000  2000 2000 2000 2000 2000 2000 2000 

Lake 2000 2000 2000  2000 2000 2000 2000 2000 2000 

River 2000 2000 2000 2000  2000 2000 2000 2000 2000 

Stone 2000 1999 2000 2000 2000  2000 2000 2000 2000 

Urban 2000 2000 2000 2000 2000 2000  2000 2000 2000 

Bareland 2000 2000 2000 2000 2000 2000 2000  2000 2000 

Farm 1999 2000 1999 2000 2000 2000 2000 2000  2000 

Fac-farm 2000 2000 2000 2000 2000 2000 2000 2000 2000  

 

 



  

Table 4. Error matrix of the PB-MLC classification on atmospherically-corrected and 

pansharpened reflectance image 

Class Forest Grassland Wetland Urban Bareland Farm Fac-farm Total 

Producer’s 

accuracy 

User’s 

accuracy 

Forest 5521 2 0 0 140 0 0 5663 97.49 85.2 

Grassland 0 2745 0 0 299 203 0 3247 84.54 62.5 

Wetland  0 0 2749 0 0 0 0 2749 100.00 84.61 

Urban 0 5 139 4335 73 1954 257 6763 64.10 99.20 

Bareland 959 1573 0 5 6684 30 55 9306 71.82 91.04 

Farm 0 67 361 13 8 4243 0 4692 90.43 65.96 

Fac_farm 0 0 0 17 138 3 3298 3456 95.43 91.36 

Total 6480 4392 3249 4370 7342 6433 3610 35876   

 

 



  

Table 5. Error matrix of the OB-SVM classification on atmospherically-corrected and 

pansharpened reflectance image 

Class Forest Grassland Wetland Urban Bareland Farm Fac-farm Total 

Producer’s 

accuracy 

User’s 

accuracy 

Forest 6374 1 0 0 0 68 0 6443 98.93 98.36 

Grassland 25 2731 0 1 13 347 0 3117 87.62 62.18 

Wetland  0 0 2875 37 0 0 0 2912 98.73 88.49 

Urban 0 0 0 3686 280 0 7 3973 92.78 84.35 

Bareland 4 62 372 633 5950 39 37 7097 83.84 92.49 

Farm 77 1595 0 8 4 6886 8 8578 80.28 93.79 

Fac_farm 0 3 2 5 186 2 3558 3756 94.73 98.56 

Total 6480 4392 3249 4370 6433 7342 3610 35876   

 

 

 



  

Table 6. Comparison of LULC classification accuracy using variant processing and 

classifiers 

Classification 

methods 

Original DN Image 

(without atmospheric correction) 

Reflectance Image  

(atmospherically corrected) 

without 

Pansharpening 

with 

Pansharpening 

without 

Pansharpening 

with 

Pansharpening 

 Overall Kappa Overall Kappa Overall Kappa Overall Kappa 

PB-MLC 78.32% 0.7434 81.05% 0.7756 78.99% 0.7509 82.44% 0.7920 

OB-SVM 73.03% 0.6848 88.40%
*
 0.8622 75.17% 0.7056 89.36%

#
 0.8735 

* and # indicates the better accuracy for the classified LULC map shown in Fig. 5(c) and 

5(d). 

 

 



  

Table 7. ANOVA table of the two-factor factorial experiment. 

Sources Sum of Square df Mean Square F Sig. Probability 

Model 10.337 4 2.584 2967.660 <0.001 

Sharpening (A)  0.060 1 0.060 68.928 <0.001 

Classifier (B)  0.000 1 0.000 0.459  0.511 

A * B  0.005 1 0.005 5.627  0.035 

Error  0.010 12 0.001   

Total 10.348 16    

 

 



  

Table 8. Least significant difference (LSD) method determined grouping of the average 

accuracy for classification being with/without pansharpening #. 

  Without pansharpening With pansharpening 

  PB-MLC OB-SVM PB-MLC OB-SVM 

Interaction (A*B) Average accuracy  0.763 0.718 0.806 0.875 

 Grouping b a c c 

Effect of Factor A Average accuracy 0.741 0.841 

 Grouping a b 

# Different alphabets in the grouping of “Interaction” and “Effect of Factor A” indicate the 

corresponding average accuracy between the items is statistically different at the 0.05 

probability level. 

 

 


